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High values of the specific strength of fibrous composites tension-compression
tests along the direction of the bonding fibers do not assure reliable operation
of a structure from such material under a complex loading, Technologically,
these materials possess broad possibilities for regulation of the structure and the
strength of the fibers of composites is, according to the principle of their produc-
tion, substantially higher than the strength of the binder. The problem of inves-
tigating the behavior of composites under the assumption of equal stress on the
fibers evokes interest since the possibilities of the reinforcement are here used
fully, In this paper the case is considered in which the material of the compo-
site is either in the state of plane strain or in a state of generalized plane stress,
On the basis of the relationships proposed in [1], there are equations introduced
which permit finding the structure parameters of plates with an equally stressed
reinforcement, Examples are examined,

1, In conformity with [1], we have for the problem under consideration in a polar co-
ordinate system

0, —aE (1 — v)~Ye, +veg) -+ 0,0, cos? a; + w,0,° cos?ay (1-1)
os = aE (1 — v} Yes + ve,) + 0,0,°sin® a; + ©,0,° sin’a,
Tra = aGery -+ ©,0,° €OS @, Sin &; -+ ®y0,° COS Oy Sin
e, c0s? o} -} &g sin® ay, 4-€rp COS 0, Sin &) = £3° (1.2
oy = Exe’, k=1,2 (1.4)

Here o,, Og, Trp are the stress components, &,, &g, &5 are the strain components ,
U,, Ug are the radial and tangential displacement components, respectively, o,° isthe
stress in the 4 -th family of fibers, g,° is the strain of the k-th family of fibers, E, is
the Young's modulus of the k-th family of fibers, E, v, G are the elastic constants of
the binder in the state of generalized plane stress of the material, If plane strain is con-
sidered, then E should be replaced by E (1 — v)~I, and v by v (1 — v)-L Hence~
forth, all the formulas are presented for the generalized state of stress @;, @®,, 0 <C
0; <1, 0 <C @y < 1are the intensities of the bonding of the first and second fami-
lies, and o is the angle between the radius-vector and the X ~th family of reinforcement
fibers,

The system of equations (1. 2) contains two unknowns u,, Us; it is of hyperbolic type
{31 with characteristics coincident with the fibers, Substituting (1, 1) into the equilibrium
eauation and setting k; = w;; 0;° (1 — v?)(aE)-! (i = 1, 2), we obtain a system of
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two equations in kl, ke,
cos? a5t Ok L+ r'1cos o Sin oy —a- 3 @ -+ kit eos 20y -+ 0082 gy~ k“ 4 (L.5)
reos a, sin uz—%— -+ k,,r~1 cos 2a, = Fi(r, ®)
cos o Sin oy a— - r1 gin? 01 + r 1k, sin 204 - cos 04 sin a33—+

risin® gy ?’5— + 1Yy sin 200 = Fy (r, ﬁ)

Exactly as the system (1. 2), the system (1.5) to determine the displacements is of hyper-
bolic type with characteristics coincident with the directions of the fibers. Let us con-
sider the problem of determining the state of stress in a circular ring, Since the displa-
cements and bonding intensities, and therefore the functions k;, k, should be single~
valued functions of the coordinates in this case, then they should be sought in the form
of trigonometric series in the problem under consideration

Uy = u,°(r) + "§1 [fn1 () cos nd -+ g1 (r) sin nd) (1.6)
us = ug®(r)+ 23'1 [fn2 (r) cos n® + gy () sin nd]
by =k°(r) + n§1 [f.3 (r) cos n® + g, (r) sin nd] (L7

ko = ks (r) -+ n§1 [/a (r) cos n® + gy (r) sin n9)

* From (1, 2) we obtain a system to determine the functions u,-°, up° and frgs Gnsy § =
1, 2:

du,® ° 9 dua u,® . —e® (L8)
— cos2ak+-—-sm ax + — —- ) cos ay Sin oy = & .

cos® o dj;fl + _S:_I?ﬁfnl + mgm + nsin® g +
(di;‘z — i—"z-) cos oy sin gy = 0

cos? o zjs_ﬂ sin? ak gy — n si:lzak fro— ncos a: sin fab (L9
(difz g“) cos a sin o = 0

The roots of the characteristic determinant are found from the eguation

Ap (A) = A2 — A (1 +tga, tgay) 4 (1 —n?) tg a; tg a,l® 4 (1.10)
n?t (tg o, tg o) =0
There are two pairs of complex-conjugate roots in the general case

MY =vp il MY =npckin, i=)—1 (1.11)

where V,, {,, %,, 7, are determined from the formulas
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2‘1[(1+s)+1/ i, =23 o+ Y g i) e
Ay = 27 [(1 +9) —-Vr“:x"], My =271 [— n§ + ]/:L;-i'} (1.13)

s=1tgoytga, E=1tga; +igay, z,=(1 49 —n?E?— (1.14)
4(1 —n?s
Yn=—20+9ME ¥ >0, r. =Vz? +y.° (1.15)
If the fibers of different families are orthogonal (tg &, = — tg o), there exists a
pair of double complex-conjugate roots determinable from the equation
A (M) =[A — (A —n)tg?q]2 =0 (1.16)

we have for n = 1
A ) = —A(1 Ftgagtga)l A% (tga; +tga,)* =0 (L1D)
and the root A = O is double; the two other roots are
Mo =1 +tgatga,) £ i(tga, +tg8a) (1.18)

If sin a, = 0, we have the double root A = O and two complex-conjugate roots
A" = 1 + intg a,, but if cos @; = 0, we have a second order equation

cos? a, sin’ay (A + n? — 1)? 4 n%2 cos'a, = 0,

to determine A, in this case, and therefore, the characteristic equation has two complex~
conjugate roots A; , — (n® —1)(1 & n; ctg a,)~1; if » = 1, we have one double
root A = 0.

Therefore, in the general case (sin 2a; 5= 0) the general solution depends on four ar-
bitrary constants, for whose determination it is sufficient to give the load on one of the
contours. This is natural since in the case cos a; 5= 0 we have a Cauchy problem for
a hyperbolic system of equations with data on a curve which is not a characteristic one,
In the case cos oy = 0 the boundary is the characteristic and therefore, the Cauchy da-
ta depend on each other, Hence, we have " propagation" of the state of stress in this case,

The functions fy;, fnz» €n1> na have the form

1 (r) = ’vn [fnla cos (8, In r) + fne’ Sin:(gnln Nl + Txn [fnao cos (nnln r) + (1.19)
f&'n sin (quln r)]
gny () = rvn [— fng® €08 (§p In 1) + fpy° sin (§, In 7)) +
P [—fue® €08 (M 1n ) + frg° sin (1, 1n )]
fug (r) = 1 [fns® €08 (En In 1) 4 fn® sin (8, In r) +
P [f2a® €08 (M 10 7) + fng° sin (n, In 7))
gna (1) = "‘n [— fas’ cos (§y In 1) -+ fns® sin (Eqln r)] +
P [— fng® €08 (g In 1) 4 fr,° sin (0 In 7)]

where f,;° i =1, 2, 3, 4 are arbitrary constants, The functions fn;, gn;, i = 3, 4 are
determined analogously by using the system (1.5). The functions fny, gnss & = 1, 2 de-
pend on four arbitrary constants, which is the distinction between the problem under con-
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sideration and the classical plane problem of elasticity theory in which the cotrespond-
ing functions fpis &n; depend on eight arbitrary constants, The functions fni» &nis i =

3, 4 governing the bonding intensity also depend on four constants; therefore there are
eight arbitrary constants for whose determination we can proceed differently (when the
boundary is not a characteristic and the equations to determine the functions fn;, gn;,
i=1,2,3, 4 are not degenerate), These constants are determined when the load onboth
contours of the ring is given; u,, u, can be fixed on one contour and %;, &, on the other,
etc, The appropriate trigonometric series to determine the stress and strain should con-
verge ; this constrains the possibility of variation in the boundary conditions, Let us exa-
mine particular cases,

2, Let o; = 0 and a, = ; / 2. In this case the reinforcement is located alongcon=
centric circles and the radius vectors, The system (1, 2) to determine the displacements
u, and Ug becomes u 1 Bug u

4ot =gy (2,1)

From (2, 1) we obtain

U, (r, ) =&,°r + ap + Z [a,cosn® + b, sinnd] (2.2
n=1

x
ug (r,9) =ro (e° — €°) — a°ﬁ Z [f—’isinf}— icosm‘}] (2.3)
e n n
Since the tangential displacement ugshould be periodic in @ (a closed ring is conside-
red), it follows from (2, 3) that a, = 0, &,° = &,°. It follows from (2.2) and (2, 3) that
it is sufficient to give one of the displacements u,or uyon either of the ring contoursin
order to determine the unknown coefficients a,, and b, in (2, 2), (2.3). Let us recall that
both the displacements u, and ugare given independently on the boundary in the clas-
sical theory of elasticity, The ambiguity originating is associated with the fact that a
characteristic Cauchy problem for a hyperbolic system of equations is solved.
If we have a system of boundary conditions in stresses
O, = a'aro + kl ,1’=R =D ('&)1 Trg = ! ; M €rs lf=R = Ps (ﬁ) (2‘ 4)

then since the stress ¢,° in the binder is constant, the coefficients ajand b, are deter-
mined when giving the tangential load along the contour and are expressed by the for-
mulas @, = Rpy; (1 — n®)-1, and b, = —R (1 — n*)~'pp,, where Pnjand ppy
are, respectively, the coefficients of ¢os 78 and sin nd in the expansion of p, (3) in
trigonometric series, and &,.4 has the form

ers = Rriig(8) = (Rr't) 3} [pm cos nd — ppy sinnd)
n=y

The functions %, and £, are determined from the equations

T p oo BN By, k=—0FPRg@ @9
From this last equation it follows
0, (r, 8) = —aGo,"Rr-t g (§) (2. 6)

Since there should always be 0 < @, <C 1, it follows from (2. 6) that & (8 <0 for
G, > 0 (i.e., when the fiber along the concentric circles are stretched), and conversely,
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g @) > 0 for gy << 0. Moreover, ®, should satisfy the inequality ©, <C 1, which
results in a constraint on the load p, (®) in conformity with (2,4) and (2, 6), An analog-
ous inequality should be satisfied for &;. This constraint on £, results in a corresponding
constraint on the load p, ().

If a solid disc is considered, then as follows from (2.5), k; =k, = 0, g, = ( 2nd
the plate meterial will be in a state of homogeneous strain, No equally stressed bonded
structure in the form of asolid disc exists with reinforcement along the radius vectors and
concentric circles.,

8, Letus examine the case when o; = 0 and 0 < o, = P << 7/ 2. In this case
one of the families of the fibers is located along the radius-vectors, and the other lies
arbitrarily without, however, being coincident with concentric circles, The system (1. 2)
has the form du, / or = g,°

du . 1 Oug . (3.1)
-——cos ﬁ—}—( T + )smzﬁ 4

1 Ou, u .
( 3% + ar — T“)cosﬁsmﬁ = g’
The functions ¥, (r) and ug® (r) have the form
o ° 2 -
UL (N ==er4C, u’(n=r [suinztr} +(e’—e°)+Crtg frt 4 Cz] (3.2)

The parts u,! and ug! of the functions Up.nd ug,dependent on ¢ have the form

A= “él [fn1 €08 n® + g4 sin nd] (3.3)

o ng, —(né_—l)smﬂcosﬁfn
u°1=2_.1|[{ lnzsin25+coszﬁ Y 1 [uns cos (n tg BInr) 4

Ung Sin (n tg fln T)]} cos n 4 {— P+ (n* —1) sin B cos g, *

n2sin? B 4 cos? f

r[—upscos(ntgPlnr) 4 u,ysin(n tg fInr)}) sin nd]

If the material strain occurs without rotation of a small element (the elementary ro-
tation of an element of medium in polar coordinates 2¥ = — du,/0¢ -+ dus/or +
Ug/r equals zero), we obtain uy’ =0, ¥," =V, u,° = &,°r, us" = 0, &,° = &,°;
therefore, the material is hence in a state of homogeneous strain, Then the functions 4;
and kybecome: k, = D2, k; = —Dgr~* 4- Dyr~ and are determined uniquely
when the load is given on one of the contours. In the case of a solid disc with a self-
equilibrated load %, and k, should vanish because of boundedness; therefore,no eqitally
stressed bonded structure exists in this case,

Under the assumption of independence of u,, ug, kl, k, from the polar angle, the
stresses in the binder have the form

0,° = aE (1 — v®)=e,° (1 4+ v) 4 vCyr-1] (3.4)
0s° = aE (1 — v [&,° (1 4-v) 4 Cur Y],
Tra = a6 [ gy (6" — &%) —17C1 tg B — G

and k&, and £, are hence determined by the formulas
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ky=Cyrtgf — 2 (sin 2)"1 (g," — &°) +Cp +Dyr2 (3.5)
ky = —Cy1sin § cos f — D, cos®fr-? 4- Cyr-1tg P cos 2p 4
-Dyr?cos 2B 4 2 C, cos 3B (sin 2B) e’ — &) Inr —
Cy cos2BfIn r + D,

To determine the constants in (3. 1) — (3, 3) there exist different methods of giving the
boundary conditions: 4 (r, 9) can be given on both contours of the ring and ur {r, 4)
can hence be determined from the solution of the problem, or y, and uy can be givenon
one of the ring contours, %, can be given on one contour and %, on the other, or they can
be given together on one of the ring contours, etc, Different methods can also act when
specifying the load on the boundary; giving the tangential component T,q on both con-
tours, and £, and %;can be given either together on one contour, or separately on differ-
ent contours. Constraints on the possible magnitude of the boundary intensities of the
bonding or the magnitude of the boundary load originate from the requirement of equi-
libration of the load,

In the case of a solid disc, it follows from (3.4) and (8.5) that C, =0, D, =0,
Cy; == 0 because of the boundedness of %, and &,, then

ky= Dy, Kk = — (sin pcos P)~' (&°— &°); oF = 05" = aEe,” (1 — )™

Tra® = aG (sin f cos B)-1 (8" — &°) = — aGk;, 0L 02 L1, 0L 0y Y,
0< Dyl for sin2p >0, 8° —e°<< 0, for sin2p <0, &° — &’ >0
and moreover, | (e,° — &;°) (sin P cos p)~*| <C 1. Therefore, we obtain a constraint
on the fiber strain and the magnitude of the angle,

4, Letusexamine the case whena, == /2 and 0 < oty = P << 71/2. One of the
families of reinforcement fibers is hence located along concentric circles, while the
other is arbitrary without coinciding with the radius-vectors. In this case the system
(1. 2) is written in the form 5

_7“%3 up = 8T (4.
du dug - du, dug . ) inB =£.°r
r—é—;icosaﬁ +(—-ﬁ- +u,.) sin®* f 4 55 + 1 g Us cosfsinf =gy

The functions y,° (r) and ug® (r) are defined by the formulas

— 2.5 () — (82° - 81’) 4,92
u == e°r, usr) ——»«-——-———~cosﬁsingrlnr+cor (4.2)
while their parts u,! and ug*,which depend on the polar angle are given by
ult(r,8) = ) [nv, (r) cos n® — nu, (r) sin nd] (4.3)
n==1

us (r, 8) = i (un (1) cos n® -+ v, (r) sin R}
n=1

and the functions u, (r) and v, (r) have the form

Uy (r) = 1'% {un, cos (B, In 1) + upzsin (4, In7)] (4.9)
v, (r) = r'n [— u,p 08 (Bp InT) 4 uyy sin (8, In 1)l

where Uy, U,s are constants and v, and § have the form
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v, = (n? 4 1) sin®P [sin?p + n? cos® p1-%, (4.5)
£, = n{n? + 1) cos B sin P [sin? B + n? cos? ]!

As is seen from (4. 1) — (4. 5), the number of constants is halved as compared withthe
preceding case. This is related to the fact that the boundary is characteristic for the sys-
tem (4, 1) in this case, As in the case examined in Sect, 2, it is sufficient to specify one
of the displacements on any of the ring contours to determine the state of material strain,
and we detect in solving the problem and specifying stresses on the boundary that it is
impossible to specify the radial and tangential load components independently; in the
absence of elementary rotation of the volume element, the material will be in a state
of homogeneous strain,

In this case the system (1, 5) is written as

I

-5+ cosﬁsmﬁ + ik, sin 28 = Fy(r,9), k1= —rFyr,8) (4.6)

If the material strain is axisymmefric, we obtain

& == 8109 gg = 810, Erg = (320 — 810) (COS 5 Sin 6)-1 (4. 7)
ky =0, ky= — (1 — ) (e’ — &°) (cos B sin B)-2 -+ C,r-2
In the case of a solid disc ®wy == const, and (g,° =— &,°) <C 0 follows from the

positivity requirement for @,. It also follows from (4, 7) that @, == O both in the case
of a ring and in the case of a solid disc, i. e, ,in axisymmetric material strain under con-
ditions that the fibers are equally stressed the reinforcement over the concentric circles
should not be mentioned,

6. Letus consider the exceptional case: the fibers lie in orthogonal directions, Let
us put ay = @, -+ % / 2. In this case, the characteristic equation (1. 10) to determine
the functions y,and us becomes

cos? @, sin? a; [A* - n? — 1]2 4 n?? cosRa, = 0 (5. 1)
and has four roots —
Mg = —ni|ctg 20, | 4| sin2¢, | V0 —sin 2a; (5.2

MM = ni | ctg 20| - i ] sin 20, | ¥t —sin® 20,
in the general case (sin’a; == 0, o, == xn / 4).

The case &, = n/ 4 (reinforcement lies at an angle 7/ 4 to the radius vector) is
exceptional; in this case (5, 1) has two double roots A"} = o+ i}/ n? — 1. For n=1
we have the double root A = 0 and two imaginary roots x‘;‘; =+ 2 ctg 2a.,. For
oy =n/4 and n = 1 ,Eq. (5.1) has one quadruple root A = 0. The functions
u,’ (r) and ug° (r) have the form

(r) =127 (5,° + £°) + Cyrt (5.3)
us® (r) = (sin 2a,)~* [(e,° — &,°) r In r — r-1C, cos 2a; + Cyrl

The case @, = () is not considered here since it has been examined in Sect, 2, The
functions k; and %, are determined from (1.5) for ay = a, + nn / 2,

For axisymmetric strain of the material and @, = 7 / 4 the dimensionless stresses
in the binder are determined by the two formulas
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0r5° = (1 4 v) (g,° -+ &,°) 21 ¢ Cy (1 —wv)r2
Tre® = (1 — v) (sin 20,)~* [(g,° — &°) + 2C,r-2 cos 2a,]
and the functions %, and %, have the form
k, = 2-1Cy + Dyr2, ky = €271 4 [3C; (1 — v) — D,lr-2

Here Cj, C3 D; are constants determined from the boundary conditions, To determine
these constantsitissufficient to specify the load on one of the ring contours, and for ex-
ample, k,on the other; other variations are also possible,

For any @y the functions f.,, g1, fus, &na 27€ determined by formulas of the type
{1.19) in which v, = %, == 0.

8, The state of strain of the material was axisymmetric in all the cases considered
for pure strain of the material, For a; == 1/ 2, s 5= 71 / 2, &t; 5= o, the displace-
ments under axisymmetric strain are expressed by the formulas

u, =rs[D; + D (1 — s)-1rt~s] 6. 1)
ug® = Dyr -+ 1 (cos a4 sin o;)~? [e,° In r— D, (s cos? &; -+sin’a,) X
A —s)r-1 — D1 —s)~tlnrl
where ;
s = tg a, tg o, (cos o, cos ay # 0, sin 2a,; 5 0) (6.2)
D = [¢,° sin 20, — &,° sin 2a,}[2sin (@; — @;) cos o, cos ap]-!

Therefore, u,° and us® depend on two arbitrary constants D and D, determined
when the load or the displacement isspecified on the ring contours, Ifthering degenerates
into a solid disc, then D, == 0 is necessary for tg o,;tg ay <C 1 since otherwise the
strains are infinite at the center of the disc. We have s~ 1 in (6. 1) and (6, 2) since
the directions of fibers of different families do not agree. Even in this case, if the ma-~
terial is strained without rotation of an elementary volume, we will obtain &,° = &’,
D, = 0. In this case u,° and u,° depend only on one arbitrary constant D,.

In any case,under the assumption of pure strain of the material, its state of strain turns
out to be homogeneous and the fiber of the material must be equally strained, The state
of material stress hence need not be axisymmetric, and the bonding intensities are deter-
mined by the formmlas presented in Sect. 5.

7, The requirements of total equilibrium, that the principal vector and principal mo~
ment of the effective forces equal zero, impose a constraint on either the selection of the
reinforcement or on the selection of the limiting bonding intensities, For example for

y=nl4 ay,=3n/4 (.1

Oy ‘r:Rm = Opmy km=12
(where R, is the outer radius of the ring and R, is the inner radius) and we have from

the condition that the principal moment equals zero
[R? @32 — R2oyn] [R’0; — R0l = E B~ (7.2

It follows from (7, 2) that for bonding intensities given on the boundary it is impaossible
to select the reinforcement material arbitrarily, and on the other hand, for given Young's
moduli of the reinforcement it is impossible to select the limiting bonding intensities
arbitrarily. Since the binder material remains elastic for given loads by assumption, the
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strength condition for the binder should be satisfied, For example, if it is assumed inthe
case of a solid disc and homogeneous strain that the binder material is subject to the
Mises yield (strength) condition with the yield point (strength) <,,, then

o7 < VB —) @i,

therefore, the admissible fiber strain depends on the strength of the binder,

Let us clarify the necessary constraints, On the contour I’ of the domain Q let the
load components be given, Then the system of equal-stress relationships and the bound-
ary conditions are

0, c0sY + e siny|r=f (), tecosy+ dasiny|p = f, (I)
where 9 is an angle formed by the external normal of the boundary and the radius-vec-
tor,form a system of four equations in three components g,, g, 8,4 of the strain tensor,
Since the strain tensor components should be determined from the solution of the prob~
lem, then by the Kronecker-Cappelli theorem (see [2]) the rank of the matrix A of co-
efficients for &,, gy &g should equal the rank of the expanded matrix, Then the fol~

lowing equality should hold __ f.Bs + f,B, — &°B, + £°By = 0
where By, i = 1, 2, 3, 4 have the form
E)? . ,
By = —2—(-1-__—(‘:)()-1—-_}7), {vcos? (y — a,) — sin®(y — d,,)}
E . .
Byyy = — 5(—1‘1_-:;,7) sin (a,, — v) {cos axsin (y + Om) 4
€08 &, 8in (Y + a;) + v [sina,, cos (Y — o) + sin a; cos (Y — a,,)]}
kkm=1,2; k=m

If at last one of the B, i = 1, 2, 3, 4 is different from zero, this system has a
unique solution, This means that if the relationship (1, 2) is satisfied, then for known
values of the bonding intensities the strain components on the boundary contour are de-
termined uniquely by means of the known load components,
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