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High values of the specific strength of fibrous composites tension-compression 

tests along the direction of the bonding fibers do not assure reliable operation 

of a structure from such material under a complex loading. Technologically, 
these materials possess broad possibilities for regulation of the structure and the 
strength of the fibers of composites is, according to the principle of their produc- 
tion, substantially higher than the strength of the binder. The problem of inves- 

tigating the behavior of composites under the assumption of equal stress on the 

fibers evokes interest since the possibilities of the reinforcement are here used 

fully. In this paper the case is considered in which the material of the compo- 
site is either in the state of plane strain or in a state of generalized planestress. 
On the basis of the relationships proposed in [l], there are equations introduced 

which permit finding the structure parameters of plates with an equally stressed 
reinforcement. Examples are examined. 

1, In conformity with [l], we have for the problem under consideration in a polar co- 

ordinate system 
or =aE (1 - vy(&, + Y&&J) + w,cq CO.9 a, + o& CO2 bl.J (l* l) 

ua = aE (1 - xy(Eg + YE,) + 0~0~ sin8 fzr -I_ oscrt sin%c, 

%a = aGE?a + OVUM” cos U, sin a, + osos’ cos a2 sin a2 

a, toss ah + aa sina ak-+&ts cos ak sin ak = eke (1.2) 

Uk” = i&Q’, k=i,2 (1.4) 

Here a,, Ua, T,a are the stress components, at, &a, 8,s are the strain components , 
u,, Ua are the radial and tangential displacement components, respectively, ok0 is the 

stress in the k -th family of fibers s ek ’ is the strain of the k -th family of fibers, E k is 
the Young’s modulus of the k-th family of fibers, E, Y, G are the elastic constants of 
the binder in the state of generalized plane stress of the material. If plane strain is con- 
sidered, then E should be replaced by E (1 - Y)-I, and Y by v (1 - v)-I Hence- 

forth, all the formulas are presented for the generalized state of stress or, 
01 < 1, 

os, 0 < 
0 6 02 < 1 are the intensities of the bonding of the first and second fami- 

lies, and ak is the angle between the radius-vector and the k -th family of reinforcement 
fibers. 

The system of equations (1.2) contains two unknowns ur, Us; it is of hyperbolic type 
[3] with characteristics coincident with the fibers. Substituting (1.1) into the equilibrium 

eouation and setting ki = oi; oio (1 - v2)(aE)-l (i = 1, 2), we obtain a systemof 
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two equations in kl, k, 

co9 al z + r-‘-l cos al sin aI -$$ + kg+ cos 2al + co@ aa -f$ + ( 1.5) 

ah t-l cos a2 sin a$,, + kg’ cos 2czB = PI (r, 6) 

cos al sin al $ + r-‘-l sin2 aa _f!k H + T1kl sin 2aI + cos a2 sin a$+ 

r-1 sins a2 2 + f1k2 sin 2a2 = Fs (r, 6) 

Exactly as the system (1.21, the system (1.5) to determine the displacements is of hyper- 
bolic type with characteristics coincident with the directions of the fibers. Let us con- 

sider the problem of determining the state of stress in a circular ring. Since the displa- 

cements and bonding intensities, and therefore the functions k,, FE, should be single- 
valued functions of the coordinates in this case, then they should be sought in the form 

of trigonome~ic series in the problem under co~~deration 

kS = k,” (r) + jjl ifns 09 cos n* + i&3 (9 sin n@J 11.7) 

k 2 = k,O (r) + n$l th (r-1 cos n@ + &,a (r) sin nel 

From (1.2) we obtain a system to determine the unction r&O, Ileo and fnst g,,, S = 

1, 2: 
du O UrO du,’ u o 

--$ cos2 ak + z sin2 ak + 7 - o cos ap sin ak = (3k” (1.8) 
P 

gnl -I- n sin2 wn2 f 

n cos ak sin ak 

r frill + (1.9) 

The roots of the characteristic determinant are found from the equation 

An @I = [A2 - h (1 + tg a, tg a2) + (1 - n2) tg 011 tg c@ + (1.l.O) 

n2he (tg aI+ tg a2)” = 0 

There are two pairs of complex-conjugate roots in the general case 

A$ = v, zt is,, ?$i = x, f in, i = r/-1 

where Qnt Snr %, ?‘I,, are determined from the formulas 

(1.11) 
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v, = 2-1 
c 
(1 + s) + f+], L= 2-+n~+pqq (1.12) 

?t* = 2-l 
[ 
(1 + s) - 1/F], qn=2+&E+J/q5] (1.13) 

s = tg &I tg as, 5 = tg a, + tg ccs, 2, = (1 + s)? - .sts - (1.14) 

4 (1 - ny s 

h = -2 (1 -I- s) & y, > 0, r, = v/2,2 + yna (1.15) 

If the fibers of different families are orthogonal (tg al = - tg as), there exists a 
pair of double complex-conjugate roots determinable from the equation 

A,,* (h) = [Iv2 - (h - n”) tg2 ail2 = 0 (1.16) 
we have for n = 1 

A, (h) = [A2 - h (1 + tg a, tg a,)a’ + A2 (tg a, + tg CX~)~ = 0 (1.17) 

and the root h = 0 is double ; the two other roots are 

A1’,s = (1 +tgai tga,) f i (&a, +tgaJ (1.18) 

If sin a, = 0, we have the double root h = 0 and two complex-conjugate roots 

?$i = 1 f intg as, . but if cos a, = 0, we have a second order equation 

cos2 a2 sin2a, (h + n2 - 1)” + n23L2 cos4a, = 0, 

to determine A, in this case, and therefore, the characteristic equation has two complex- 

conjugate roots A1, s = (ns -1) (1 f ni ctg a&l; if n 7 1, we have one double 
root h = 0. 

Therefore, in the general case (sin 2a1 # 0) the general solution depends on four ar- 
bitrary constants, for whose determination it is sufficient to give the load on one of the 

contours. This is natural since in the case cos a, # 0 we have a Cauchy problem for 

a hyperbolic system of equations with data on a curve which is not a characteristic one. 
In the case cos cc, = 0 the boundary is the characteristic and therefore, the Cauchy da- 

ta depend on each other. Hence, we have “propagation” of the state of stress in this case. 
The functions fnl, fns, g,,l, &a have the form 

Al (r) = rvn If?U” co9 (En In F) + fnzo sin~(fJn r)l + rxn [fnso co9 (q&r r) + (1.13) 
fr’n sin (Ilnln r)l 

gnl (r) = rvn I- fnao 03s (f, In r) + fnlo sin (En In r)l + 

r*n [-fn4’ cOS (qn III F) + fn8” Sin (qn h F)] 

fna (r) = qn IfnsO cos (f, In r) + fn4” sin (En In r) + 

rxn ffnl” Cos (rln In r) + fnao sin (11, In 41 

kh0 (4 = rvn [-- fn4” co9 (L In r) + fns” sin (%Jn 41 + 

rxn I- fna” co9 (qn In r) + fnI” sin (qn In r)] 

where fnio, i = 1, 2, 3, 4 are arbitrary constants. The functions fni, g,,i, f = 3, 4 are 
determined analogously by using the system (1.5). The functions f,,i, g,[, i = 1,2 de- 
pend on four arbitrary constants, which is the distinction between the problem under con- 
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sideration and the classical plane problem of elasticity theory in which the correspond- 
ing functions fni, gni depend on eight arbitrary constants. The functions fni, gni, i = 
3,4 governing the bonding intensity also depend on four constants ; therefore there are 
eight arbitrary constants for whose determination we can proceed differently (when the 
boundary is not a characteristic and the equations to determine the functions fnr, gni, 
5 = 1,2, 3, 4 are not degenerate). These constants are determined when the load on both 
contours of the ring is given; u,., us can be fixed on one contour and $, k, on theother, 
etc. The appropriate trigonometric series to determine the stress and strain should con- 
verge ; this constrains the possibility of variation in the boundary conditions. Let us exa- 

mine particular cases. 

2, Let a, = 0 and aa = n / 2. In this case the reinforcement is located along con- 
centric circles and the radius vectors. The system (1.2) to determine the displacements 

u, and us becomes 
% 0 -=&it ar 

1!!E++, (251) 
r 

From (2.1) we obtain 

u, (r’, 6) = erOr + a0 + ngl [a, cos n6 + b, sin n6] (2.2) 

m 

Since the tangential displacement usshould be periodic in fJ (a closed ring is conside- 

red), it follows from (2.3) that a, E 0, szo s cl O. It follows from (2.2) and (2.3) that 

it is sufficient to give one of the displacements u, or us on either of the ring contours in 

order to determine the unknown coefficients a, and b, in (2.2), (2.3). Let us recall that 
both the displacements u,. and uaare given independently on the boundary in the clas- 

sical theory of elasticity, The ambiguity originating is associated with the fact that a 

characteristic Cauchy problem for a hyperbolic system of equations is solved. 
If we have a system of boundary conditions in stresses 

at = aa,” + kl jr& = PI(e), r,8 = -+ &&A jr=R = pz (6) (2.4) 

then since the stress or0 in the binder is constant, the coefficients u,and b, are deter- 
mined when giving the tangential load along the contour and are expressed by the for- 

mulas a, = RP,, (1 - $)-I, and b, - -R (1 - n2)-lp,,, where pnl and p,,i 
are, respectively, the coefficients of cos n9 and sin n8 in the expansion of P2 (fi) in 

trigonometric series, and .ar8 has the form 

8+8 = Rr-lg (6) = (RFl) $ [p,* cos n6 - pnz sin n6] 

The functions k, and k2 are determined from the equations 

-$+++~~g~(~), k2=_(t-;)R g(6) (2.5) 

From this last equation it follows 

o2 (r, -8) = - u&%J~-~RF--~ g (6) (2.6) 

Since there should always be 0 < wz < 1, it follows from (2.6) that g (a> < 0 for 
o. > 0 (i.e., when the fiber along the concentric circles are stretched), and conversely, 
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g @) > 0 for us ( 0. Moreover, CO, should satisfy the inequality os < 1, which 
results in a constraint on the load pz (e) in conformity with (2.4) and (2.6). An analog- 
ous inequality should be satisfied for k,. This constraint on & results in a corresponding 

constraint on the load p1 (@). 

If a solid disc is considered, then as follows from (2.5), k, E Fc, 3 0, e,a = 0 and 
the plate meterial will be in a state of homogeneous strain. No equally stressed bonded 

structure in the form of a solid disc exists with reinforcement along the radius vectors and 

concentric circles. 

3. Let us examine the case when a, = 0 and 0 < a2 = fJ < TX / 2. In this case 
one of the families of the fibers is located along the radius-vectors, and the other lies 

arbitrarily without, however, being coincident with concentric circles. The system (1.2) 

has the form au, / dr = E,” 

(3. I) 

The functions U,” (r) and U8” (r) have the form 

u,‘(r) = El9 + Cl, u8’(r) = r ei’)+G tg /3rBr-l + Csj (3.2) 

The parts U,r and U8l of the functions U,;.nd U8,dependent on jj have the form 

Cosnflf grill sin&] (3.3) 

co 

248’ = m %?,I - (n” 
- I) sin ’ c0s Brnl + r [un3 cos (n tg fi In r) + 

n=1 
7 sin2 p + CO.32 p 

r [- %4 COS (n tg fl In r) + u+ sin (n tg $ In r)]} sin nfi] 

If the material strain occurs without rotation of a small element (the elementary ro- 

tation of an element of medium in polar coordinates 2% = - th,iti + &.&8lti + 
U8/r equals zero), we obtain Ug' 3 0, U,’ E 0, UP0 = tz10 r, U8' = 0, Q“ 3 &? 
therefore, the material is hence in a state of homogeneous strain. Then the functions kl 
and ?ss become: k2 = D,,+, kl = --D,r-a + D,r-’ and are determined uniquely 
when the load is given on one of the contours. In the case of a solid disc with a self- 
equilibrated load kl and k, should vanish because of boundedness ; therefore, no equally 

stressed bonded structure exists in this case. 

Under the assumption of independence of U,, U8, k,, ks from the polar angle, the 
stresses in the binder have the form 

o,O = aE (1 - Y~)-%z~~ (1 + Y) + vC1r-ll (3.4) 

08' =fZE(l - Y~)-~[E~~(~ + v)+ Cf-l], 
0 

fr8 = aG - ei”) - r-V1 tg fl- C, 1 
and kl and k, are hence determined by the formulas 
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k, = C*r-’ tg fi - 2 (sin zfq- (F; - &1”) f c, + D,r-2 (3.5) 
k, = -C,r-Z sin p cos fi - D, cos2@--2 + C,r-l tg f3 cos 2f! + 

- D,ra cos 2/3 + 2 Cl cos Q3 (sin 2@38; - 15;) In r - 
C, cos2,fh r + D, 

TO determine the constants in (3. I) - (3.3) there exist different methods of giving the 
boundary conditions: ug (r, @) can be given on both contours of the ring and u,. (r, 6) 
can hence be determined from the solution of the problem, or u,? and ua can be given on 
one of the ring contours, & can be given on one contour and lc, on the other, or they can 
be given together on one of the ring contours, etc. Different methods can also act when 
specifying the load on the boundary ; giving the tangential component zP8 on both con- 
tours, and ki and k, can be given either together on one contour, or separately on dlffer- 
ent contours. Constraints on the possible magnitude of the boundary intensities of the 
bonding or the magnitude of the boundary load originate from the requirement of equi- 
libration of the load. 

In the case of a solid disc, it follows from (3.4) and (3.5) that C, S,Z 0, 19, z 0, 
c 2 zs 0 because of the boundedness of k, and k,, then 

k, zz Da, k, = - (sin fJ cofj jj)-L (eg- 8:); a,” = CfaO = aE&,O (I - v)-’ 

Z,&O = aG (sin p cos fi)-’ (8s” - pi*) = - aGkl, 0 < m2 g 1, 0 & OX< 1, 
0 < L)z < 1 for sin 2@ > 0, szo - El0 < 0, for sin 2p < 0, ez” - 8,O > 0 
and moreover, 1 (Q,’ - et”) (sin j3 60s p)-” 1 < 1. Therefore, we obtain a constraint 
on the fiber strain and the magnitude of the angle. 

4. Let us examine the case when al = d2 and 0 < a2 = fi < n/2. One of the 
families of reinforcement fibers is hence located along concentric circles, while the 
other is arbitrary without coinciding with the radius-vectors. In this case the system 
(1.2) is written in the form 

(4.1) 

The functions u,” (r) and us0 (r) are defined by the formulas 

ur o = esor, u&“(r) = ~~~~sf~~ r In r + Gr 

while their parts u,i and ug’,which depend on the polar angle are given by 

2~2 (r, 6) = %jl [w, (r) cos n6 - nu, (r) sin n@l 

(4.2) 

(4.3) 

2~~2 (r, 6) = 5 [u,(r) cos niP -k v,(r) sin n6J 
Ft==l 

and the functions u,, (r) and u, (r) have the form 

u, (r) = r’n lu,, co.3 (5, In r) + un2 sin (I;, In r)l 

u, (r) = rv* I- u,2 cos (E, In r) + unl sin (En In r)l 

where r&r, un2 are constants and v, and &have the form 
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V n = (na + I) sins p [sin2@ + na CO9 PI-“, (4.5) 

E, = n(n* + 1) cos p sin fi [sin2 0 i- n2 Cd PI” 

As is seen from (4.1) - (4.5), the number of constants is halved as compared with the 
preceding case. This is related to the fact that the boundary is characteristic for thesys- 
tern (4.1) in this case. As in the case examined in Sect. 2, it is sufficient to specify one 
of the displacements on any of the ring contours to determine the state of material&rain, 
and we detect in solving the problem and specifying stresses on the boundary that it is 
impossible to specify the radial and tangential load compcments inde~ndently ; in the 
absence of elementary rotation of the volume element, the material will be in a state 
of homogeneous strain, 

In this case the system (1.5) is written as 

r-1 $$- + C0S p sin fi 3 + T%, sin 28 = Fs (F;@), kl = - rfl&,f)) (4.6) 

If the material strain is axisymmetric, we obtain 

0, = &IO, es = &x0, e,B = (EaO - el’) (00s p sin /3)-i (4.7) 
k 1 EZ 0, kp, = - (1 - v) (E; - El’) (cos f3 sin /3)-” + C,r-2 

In the case of a solid disc o2 = const, and (es” =- ei’) < 0 follows from the 
positivity requirement for 0s. It also follows from (4.7) that o1 zz 0 both in the case 
of a ring and in the case of a solid disc, i. e., in axisymmetrlc material strain under con- 
ditions that the fibers are equally stressed the reinforcement over the concentric circles 
should not be mentioned. 

6. Let us consider the exceptional case : the fibers lie in orthogonal directions. Let 
us put aa = al $- 3% / 2. In this case, the characteristic equation (1.10) to determine 
the functions u,and ua becomes 

Cos2 a, sina a, [A2 + n2 - 1l2 + nshs c0s22a, = 0 (5.1) 

and has four roots 
hi”tf = - ni 1 ctg 2u, I-& i 1 sin 2al 1” jfnZ - sin% 2% (5.2) , 

Xc1 = ni 1 ctg 2aJ & i 1 sin 2al 1-l v/n% - sina 2al 

in the general case (sin2a, # 0, al # n / 4) . 
The case a, = nf 4 (reinforcement lies at an angle It / 4 to the radius vector) is 

exceptional ; in this case (5,l) has two double roots AT’ = =t i v na - 1, For n.= 1 
we have the double root h = 0 and two imaginary roots h$:i = s 2i ctg’ 2a,. For 
a, = ?E / 4 and n = 1 , Eq. (5.1) has one quadruple root h = 0. The iimctions 
u,’ (r) and ug” (r) have the form 

Ur” (r) = r2-l (El0 + e2’) + C,r-l (5.3) 

ug” (r) = (sin 2al)-’ [(EC - er’) r In F - rlC, cos Za, + C2rl 

The case ax = 0 is not considered here since it has been examined in Sect. 2. The 
functions kl and ks are determined from (1.5) for a2 = a, + n / 2, 

For axisymmetric strain of the material and ai = n / 4 the dimensionless stresses 
in the binder are determined by the two formulas 
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a,&” = (1 + 4 (El0 + E7.y 2-l “F: Cl (I - v) r-2 
z,a” = (1 - y) (sin 2cW I(Q" - ~0) + 2cp Cos aa,] 

and the functions kl and k2 have the form 

k, = 2-Vz + Dir-2, kz = C22-1 + [3C, (1 - v) - D,]r-2 

Here ci, czt D, are constants determined from the boundary conditions. To determine 
these Constants it is sufficient to specify the load on one of the ring contours, and for ex- 
ample, kc, on the other ; other variations are also possible. 

For any % the functions fnl, g,,, fn2, g,, are determined by formulas of the type 
(1.19) in which V, E x, SE 0. 

6, The state of strain of the material was axisymmetric in all the cases considered 
for pure strain of the material. For cc1 # x f 2, a2 $= n / 2, a, # az the &place- 
ments under ax~ymme~ic strain are expressed by the formulas 

ur 
0 = r-s [D, + D (1 - s)+-$1 (6.1) 

U&O = D,r + r (cos a, sin c+)-” [eiO In r- D, (s toss a, +sirPcQ X 

(1 - s)-1rs-1 - D(1 - s)-1 In rl 
where 

s = tg al tg a2 (cos a, cos a2 # 0, sin 2a, # 0) (6.2) 

D = (El0 sin 2az - EZo sin 2a,] [asin (az - aI) cos a, Cos cczl-l 

Therefore, u,“ and ue” depend on two arbitrary constants D, and 02 determined 
when the load or the displacement isspecified on the ring contours. If the ring degenerates 

into a solid disc, then D, z 0 is necessary for tg a,tg a2 < 1 since otherwise the 
strains are infinite at the center of the disc. We have s # 1 in (6.1) and (6.2) since 

the directions of fibers of different families do not agree, Even in this case, if the ma- 

terial is strained without rotation of an elementary volume, we will obtain E,’ z es’, 

D a =, 0. In this case u,.’ and uao depend only on one arbitrary constant D1. 

In any case, under the gumption of pure strain of the material, its state of strain turns 

out to be homogeneous and the fiber of the material must be equally strained. The state 
of material stress hence need not be axisymmetric, and the bonding intensities are deter- 

mined by the formulas presented in Sect. 5. 

7 l The requirements of total equilibrium, that the principal vector and principal mo- 
ment of the effective forces equal zero, impose a constraint on either the selection of the 
reinforcement or on the selection of the limiting bonding intensities. For example for 

al = ?i I 4, a2 = 3n I 4 wlr lhRm = 0 km, b,, = f,2 (7. B 

(where Rz is the outer radius of the ring and RI is the inner radius) and we have from 

the condition that the principal moment equals Zero 

[Rz2 @aa - R,%aJ tR,aW, - Rs%Ql-1 = EJ2-1 (7.2) 

It follows from (7.2) that for bonding intensities given on the boundary it is impassible 
to select the reinforcement material arbitrarily, and on the other hand, for given Young’s 
mo&u of i&e reinforcement it is impossible to select the limiting bonding intensities 

arbitrarily, Since the binder material remains elastic for given loads by assumption, the 
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strength condition for the binder should be satisfied. For example, if it is assumed in the 
case of a solid disc and homogeneous strain that the binder material is subject to the 

Mises yield (strength) condition with the yield point (strength) z*, then 

therefore, the admissible fiber strain depends on the strength of the binder. 

Let us clarify the necessary constraints. On the contour I’ of the domain 62 let the 
load components be given. Then the system of equal-stress relationships and the bound- 

ary conditions are 
a, cos Y + r& sin y 1 r = fl (r), r,t3 cos y + 08 sin y 1 r = f2 (r) 

where y is an angle formed by the external normal of the boundary and the radius-vec- 
tor,form a system of four equations in three components et, e8, 8,s of the strain tensor. 
Since the strain tensor components should be determined from the solution of the prob- 

lem, then by the Kronecker-Cappelli theorem (see [Z]) the rank of the matrix d of co- 
efficients for e,, a& e,,a should equal the rank of the expanded matrix. Then the fol- 
lowing equality should hold 

-fiBs + fi& - e,“B, + ezoBz = 0 

where Bt, i = 1, 2, 3, 4 have the form 

Bk = WV 
2 (2 _ vj (1 + VI” tv cOsa (Y - am) - sina (v - a,)) 

&+a = - 
aE 

2 (1 - vy sin (u, - y) {ms ak sin (y + a,) + 
. 

cos am sin (y + ak) + v [sin am cos (y - ak) + sin uk cos (y - a,)]} 
k,m=ir2; k+m 

If at last one of the Big i = 1, 2, 3, 4 is different from zero, this system has a 
unique solution. This means that if the relationship (1.2) is satisfied, then for known 
values of the bonding intensities the strain components on the boundary contour are de- 
termined uniquely by means of the known load components. 
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